

Approach to Hyponatremia

Amy Yau, MD

Assistant Professor of Clinical Medicine
Division of Nephrology
Department of Internal Medicine
The Ohio State University Wexner Medical Center

MedNet21
Under the Continuing Medical Education

THE OHIO STATE UNIVERSITY
WEXNER MEDICAL CENTER

1

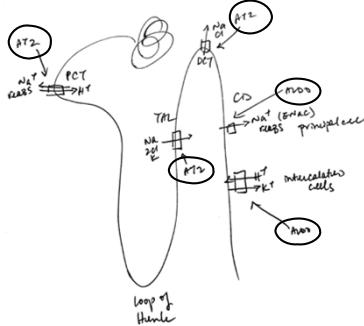
Objectives

- Understand the physiology associated with hyponatremia
- Describe symptoms associated with hyponatremia
- Identify how the diagnostic work up incorporates renal physiology.
- List the various causes of hyponatremia
- List the different treatment strategies that can be utilized to resolve hyponatremia.

2

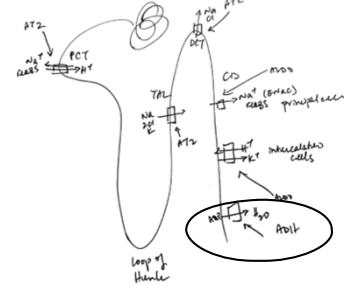
Sodium Disorders = Water Disorders

Salt by Ponsikh from Noun Project (CC BY 3.0)
Water by Pro Player from Noun Project (CC BY 3.0)


3

Key Hormones Maintain Volume and Tonicity

- Kidneys are good at 2 things: Water and Sodium retention
- Na reabsorption → Angiotensin II (AT2) and aldosterone
- Water reabsorption → Anti-diuretic hormone (ADH)


4

AT2 and Aldo → vasoconstriction and Na retention

5

ADH → water retention and responds to tonicity and volume

6

Of note, Age and Kidney Disease Impair Dilution and Concentration

- AKI/CKD
 - If advanced CKD → UOsm ranges from 200-300 mOsm/kg
 - Due to reduced GFR (impaired free water excretion), volume expansion, urea osmotic diuresis
- Older age
 - UOsm range 92 mOsm/kg → 400-700 mOsm/kg by 80s
 - Due to reduced GFR
 - Increased medullary blood flow

Kidneys by Muhammad Shabirz from Nour Project (CC BY 3.0)
Old person by amin mutaqin from Nour Project (CC BY 3.0)

Karam and Tuzson, Clin Geriatr Med, 2013
Cowen et al, Endocrinol Clin North Am, 2013
Epstein, JASN, 1996
Lindemann et al, J Lab Clin Med, 1996
Rose and Post, Clinical Physiology of the Kidney, 2nd edition

7

Hyponatremia is common in hospitalized patients, the elderly, and patients with comorbidities

- 15 - 53% of hospitalized patients
- 7-11% in community dwelling individuals
- More common in elderly and if comorbidities
 - 6% in non-geriatric hospital wards v. **22% geriatric wards**
 - Elderly pts with CAP, SAH, COPD, **cancer** → incidence 8%, 16%, 16%, **38%**

Grattaglione et al, J Prim Health Care, 2018
Zhang and Li, Eur Ger Med, 2020
Binkley et al, Sci Rep, 2019

8

Increase Mortality with Hyponatremia		
	Mortality Rate (%)	Mortality Risk
Heart Failure	31	1.8
Cirrhosis	26-73	2.1
Myocardial Infarction	13.8-24.1	2.0
Pulmonary Embolism	16.6	1.53
Pneumonia	5.4	1.3
CKD	17.3-29.6	1.12-1.32
Cancer		4.28
Hospitalized Pts	3.4-5.9	1.37-1.55
ICU Pts	14.3	1.3
General Population	3.4-5.9	1.14-8.0

Hoorn and Zietse, AJKD 2013
Abu Zeinah et al, Eur J Cancer Care, 2013

9

Symptoms of Hyponatremia

- Altered mental status, seizure, confusion
- Fall prevalence 27.9% (OR 3.02)
 - Every 5 mmol/L drop in [Na]_s → risk of falling increased 32%
 - 128.73 millisecond slower reaction time if hyponatremic
- Resolution of hyponatremia →
 - Timed UP and Go test improved by 2.5 seconds
 - Nerve conduction velocity increased 14.3%
- Fractures in 4% of hyponatremia patients

Genathla et al, J Am Geriatr Soc 2013
Nigris et al, J Am Geriatr Soc 2015
Barony et al, J of Biological Chemistry 2011
Barony et al, Molecular and Endocrinology 2022
Ayus et al, NDT 2012
Filmer et al, Schizophrenia Research 2019
Vandengheynst et al, Eur J Clin Invest 2019

10

Main Mechanisms of Hyponatremia

Impaired dilution of urine

- "appropriate" high ADH (hypovolemia or low EABV)
- "inappropriate" high ADH in response to other stimuli (pain, nausea, meds, hypocortisolism, etc)
- Diuretics (nonosmotic)
- Kidney disease

Low volume of electrolyte free urine

- Low solute, low protein intake
- Oliguria

Drinking Water by Smashing Stocks from Noun Project (CC BY 3.0)
urine by Lisside from Noun Project (CC BY 3.0)

Yau and Buchkremer, AKDH 2024

11

Approach to Diagnosis

12

Step 1: Confirm "True/Hypotonic" Hyponatremia

Serum osmolality

Low (< 280 mosm/kg)

Hypotonic Hyponatremia

Normal (280-295 mOsm/kg)

Isotonic Hyponatremia

- Elevated serum proteins
- Hyperlipidemia

High (>295 mosm/kg)

Hypertonic Hyponatremia

- Hyperglycemia
- Mannitol, sorbitol, glycerol, etc
- Iodinated contrast

13

Traditional Schema

Low (< 280 mosm/kg)
Hypotonic Hyponatremia

Check Volume Status

Hypovolemia (30%)

UrNa < 10 mEq/L (extrarenal salt loss)

- Dehydration
- Diarrhea
- Vomiting
- UrNa > 30 Eq/L (renal salt loss)
- Diuretic use (8%)
- ACE inhibitors
- Nephropathies
- Mineralocorticoid deficiency

Euvolemia

- SIADH (35%)
- Postoperative
- Psychogenic polydipsia (5%)
- Low solute, beer potomania
- Primary adrenal (glucocorticoid) deficiency
- Diuretics, ACE inhibitors
- Hypothyroidism

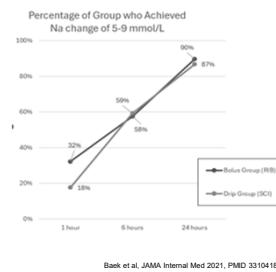
Hyponolemia (20%)

- CHF
- Liver Disease
- Advanced CKD
- Nephrotic Syndrome (rare)

Grattaglione et al. J Prim Health Care, 2018

14

New Schema


Hypotonic Hyponatremia Confirmed

Acute or severe symptoms?

Yes

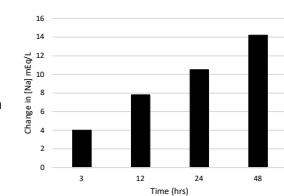
Consider
hypertonic saline

Bolus is better than drip

15

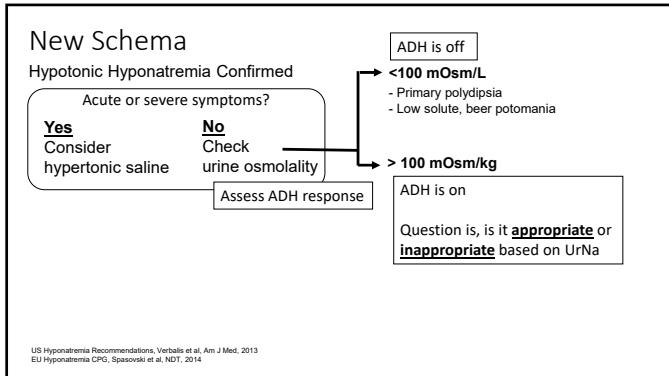
Na change of 4-6 mEq/L improves severe symptoms

- **Worthley and Thomas (n=5)**

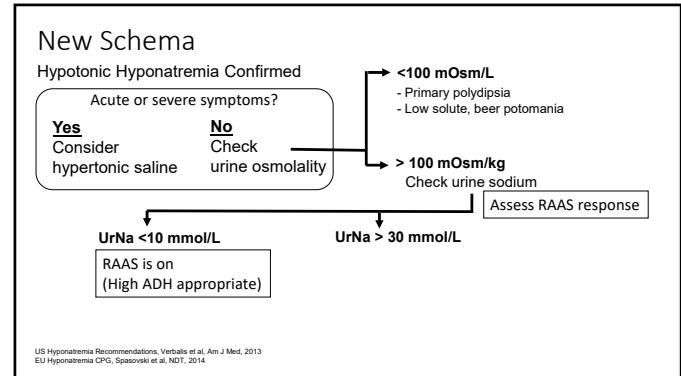

- Mean Na 105 mmol/L
- Given HTS, 30 min later mean Na 112 mmol/L

- **Sarnaik et al (n=60, 69 episodes)**

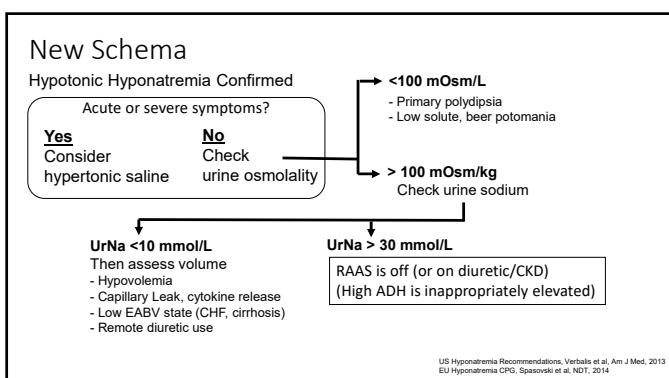
- After HTS, mean Na change 3 mmol/L within 4 hours

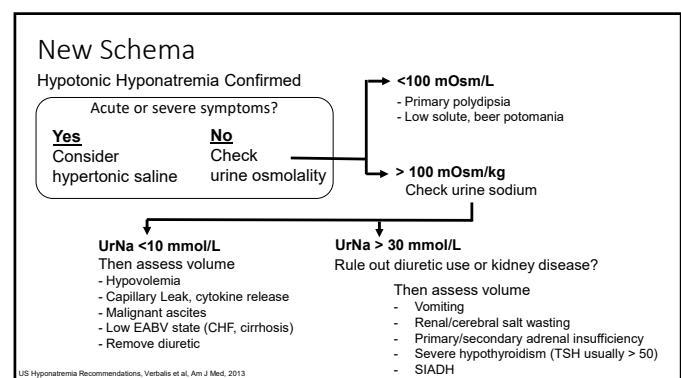

- **Ayus et al (n=64, 71 episodes)**

- Mean Na 117 mmol/L
- After HTS, mean Na change 4 mmol/L within 3 hours
- Majority had symptom improvement



Sarnaik et al. Critical Care Med 1991; PMID: 2055051
Worthley and Thomas, British Med J 1986; PMID: 3510111
Ayus et al. AJKD 2015; PMID: 25451513


16


17

18

19

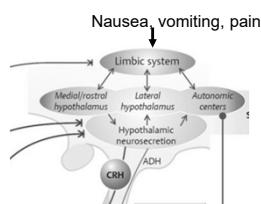
20

SIADH is Diagnosis of Exclusion

Box 4. Common Causes of SIADH

CNS disease: Brain abscess, encephalitis, head trauma, intracranial hemorrhage, meningitis, tumor

Drugs: Amiodarone, carbamazepine, oxcarbazepine, 3,4-methylenedioxymethamphetamine (MDMA, "Ecstasy"), nicotine, phenothiazines, opioids, selective serotonin re-uptake inhibitors, tricyclic antidepressants, cyclophosphamide, chloropropamide, vincristine


Malignancy: Most commonly small cell carcinoma of the lung followed by head and neck cancer and non-small cell lung cancer

Pulmonary disease: Acute respiratory failure, COPD, pneumonia, tuberculosis

Other: HIV infection, idiopathic, postoperative state, reset osmostat

Genetic – X linked recessive GOF T2AVP receptor (OMIM 300539)

Nausea, vomiting, pain

Winn Seay et al, AJKD Core Curriculum 2019

21

Often Adrenal and Thyroid Function not checked in Euvolemic Hyponatremia

	Barnes et al	Katoh et al	Tzoulis et al	Greenberg et al	Cuesta et al	Diker-Cohen et al
Number of pts	110 SIADH	100 with AMS, hypoNa	139 hypoNa	1524 SIADH	573 SIADH	564 euv hypoNa
TFTs (%)	50.9	100	61.1	64	91	69
Adrenal Function Test (%)	91.1	100	31.7	33	84	29
% of pts dx with hypothyroid/AI	3.6/3.6	8/2	0/0.7	NR	0/3.8	1/1

Prevalence of thyroid disorder/AI in hyponatremia ~3%

Prevalence of hyponatremia in patients with hypopituitarism was 9.6%

In 80.7%, hyponatremia was key to diagnosis

Diker-Cohen et al. Int and Emerg Med J. 2016
Milic et al. Endocrine. 2017

22

Approach to Management

When correcting sodium, determine

1. **Na goal (rate of change)**
 - Is my patient at risk of ODS?
2. **Management Strategy**
 - What is the cause?
 - How can I help with renal free water excretion (or reduce intake)?
 - Is my patient at risk of over-correcting my goal rate? (or under-correcting?)

23

24

Risk factors of ODS and over-correction seem to overlap

Risk of ODS	Risk of Overcorrection
<ul style="list-style-type: none"> Hypokalemia Alcoholism Malnutrition Advanced liver disease Na \leq 105 mmol/L 	<ul style="list-style-type: none"> Hypokalemia < 3.5 mEq/L Weight < 60 kg Low solute, EtOH abuse, primary polydipsia Hypovolemia
<p>ODS risk is "unlikely"</p> <ul style="list-style-type: none"> acute water intoxication Na \geq 120 mmol/L unless other risk factors 	

Verballis et al, Am J Medicine 2013, PMID 24074529
Pelouto et al, Eur J Endocrinology 2023, PMID 36881992

25

If you over-correct beyond your Na goal, consider re-lowering based on ODS Risk

- Low to moderate risk of ODS**
 - Goal sodium change 4-8 mEq/L in first 24 hours
 - Consider re-lowering if changes more than 10-12 mmol/L*
- High risk of ODS**
 - Goal sodium change of 4-6 mEq/L in first 24 hours
 - Consider re-lowering if changes more than 8 mmol/L

Verballis et al, Am J Medicine 2013, PMID 24074529
Brain Damage by Muhammad Owais from Noun Project (CC BY 3.0)

26

Who is at risk of over-correcting?

N=180, mean Na 120 mmol/L
32% over-corrected

	Univariable	Multivariable	Odds ratio (95% CI)
Body weight (per kg)	0.95 (0.92-0.98)	0.96 (0.92-0.99)	
Baseline plasma sodium (mmol/L)	0.88 (0.82-0.95)	0.86 (0.79-0.94)	
Volume depletion	2.71 (1.16-6.33)	3.07 (1.06-8.83)	
Hypokalemia*	3.70 (1.53-8.92)	4.40 (1.45-13.35)	
Number of boluses	0.43 (0.23-0.89)	0.34 (0.13-0.88)	

*Plasma potassium < 3.5 mmol/L.

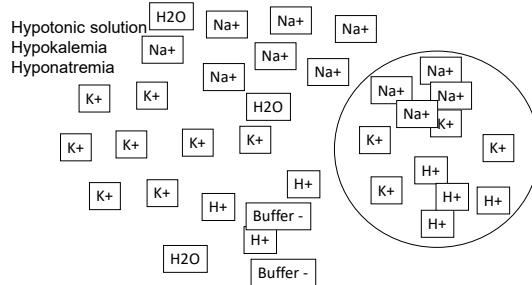
Pelouto et al, Eur J Endocrinology 2023, PMID 36881992

27

Main Therapies of Hyponatremia

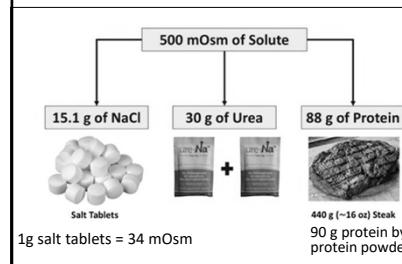
Impaired dilution of urine

- Normalize volume/EABV
- Suppress ADH (stop triggering meds, pain, nausea, cortisol)
- Tolvaptan, loop diuretic
- Stop offending diuretics
- Treat kidney disease/Dialysis


Low volume of electrolyte free urine

- Increase solute (urea, protein, Na, K) intake, SGLT2i
- Treat kidney disease/Dialysis, loop diuretic

Drinking Water by Smashing Stocks from Noun Project (CC BY 3.0)
urine by Lissie from Noun Project (CC BY 3.0)


28

Correction of KCl in Hyponatremia

29

Inducing Solute Diuresis

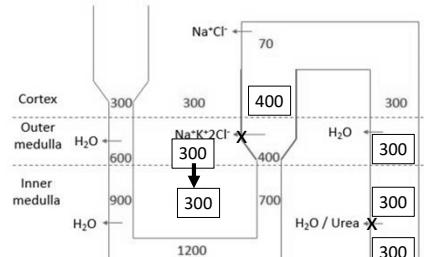
SGLT2 inhibitors
Compared to placebo,
increased Na by ~3 mEq/L

Courtesy of Helbert Rondon, MD @NephroMD
Monneret et al. Eur J Endocrinol 2023
Refrard et al. JASN 2019

30

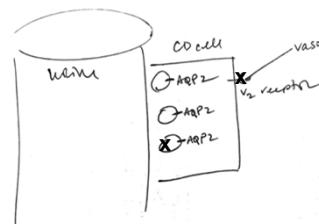
Urea is considered a medical food (not drug)

31


For SIADH specifically, how effective are therapies?

Treatment	Patients (n)	Rate of Na change (mEq/L/d)	Overly Rapid correction in 24/48h (%)	Change in [Na] >= 5 mEq/L (%)	[Na] > 130 mEq/L (%)	[Na] > 135 mEq/L (%)
No treatment	138	1.5	0.7%	39%	43%	19%
Stop offending Rx/insult	30	2.0	10%	47%	57%	27%
Fluid Restriction (FR)	748	2.0	2.6%	44%	29%	10%
FR + NS	263	1.5	2.5%	42%	25%	8%
FR + Salt tabs	151	1.0	3.0%	46%	37%	11%
Isotonic Saline	437	2.0	2.1%	36%	20%	4%
Hypertonic Saline	86	4.0	16.9%	60%	26%	13%
Tolvaptan	225	4.0	12.1%	78%	74%	40%

Verbalis et al. Am J Med 2016


32

Increase free water excretion with loop diuretic

33

Vaptans target the MOA of SIADH

Long term use: Monitor LFTs

In ADPKD (starting dose 60 mg daily), increased incidence of LFT evaluation more than 3x upper limit of normal

Dose for SIAD or hypovolemic hyponatremia (CHF/cirrhosis) is 15-60 mg daily

Schrer et al, NEJM 2006
Rondon-Berrios and Berl, Best Practice & Res Clin Endocrin & Metab 2016

34

Summary: My Approach to Hyponatremia

- Sodium disorders are water disorders
- Symptoms of hyponatremia and hyponatremic encephalopathy may be nonspecific
- Use a systematic approach to diagnosis of hyponatremia
- Management relies on 3 parameters
 - Determine risk of ODS and risk of over-correction
 - Identify underlying cause, then develop management plan based on cause/mechanism

35